
VulSniper: Focus Your Attention to Shoot Fine-Grained Vulnerabilities
Xu Duan1,2 , Jingzheng Wu1,3 , Shouling Ji4 , Zhiqing Rui1,5 ,

Tianyue Luo1,6 , Mutian Yang1,6 and Yanjun Wu1,3

1Intelligent Software Research Center, Institute of Software, Chinese Academy of Sciences
2School of Computer & Communication Engineering, University of Science and Technology Beijing

3State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
4College of Computer Science and Technology, Zhejiang University

5Artificial Intelligence Academy, University of Chinese Academy of Sciences
6Beijing VuLab Technology Co.Ltd

duanxu1997@gmail.com, {tianyue, jingzheng08}@iscas.ac.cn

Abstract

With the explosive development of information
technology, vulnerabilities have become one of the
major threats to computer security. Most vulnera-
bilities with similar patterns can be detected effec-
tively by static analysis methods. However, some
vulnerable and non-vulnerable code is hardly dis-
tinguishable, resulting in low detection accuracy.
In this paper, we define the accurate identification
of vulnerabilities in similar code as a fine-grained
vulnerability detection problem. We propose Vul-
Sniper which is designed to detect fine-grained vul-
nerabilities more effectively. In VulSniper, atten-
tion mechanism is used to capture the critical fea-
tures of the vulnerabilities. Especially, we use
bottom-up and top-down structures to learn the at-
tention weights of different areas of the program.
Moreover, in order to fully extract the semantic fea-
tures of the program, we generate the code property
graph, design a 144-dimensional vector to describe
the relation between the nodes, and finally encode
the program as a feature tensor. VulSniper achieves
F1-scores of 80.6% and 73.3% on the two bench-
mark datasets, the SARD Buffer Error dataset and
the SARD Resource Management Error dataset re-
spectively, which are significantly higher than those
of the state-of-the-art methods.

1 Introduction
Vulnerabilities have become a major threat to software se-
curity. Once the vulnerabilities are exploited by attackers,
serious consequences will be caused. According to the data
released by MITRE1, as of Jan. 31. 2019, there have been
112,364 entries in CVE (Common Vulnerabilities and Expo-
sures), and the amount of vulnerabilities is still exploding.
The known vulnerabilities are often recurring throughout dif-
ferent software, which costs software security developers a

1https://cve.mitre.org/

int foo(char *str, size_t n) 
{

char buf[BUF_SIZE], *ar;
size_t len = strlen(str);

if(len >= BUF_SIZE) return ERROR;
memcpy(buf, str, len);

ar = malloc(n);
if(!ar) return ERROR;

}

int foo(char *str, size_t n) 
{

char buf[BUF_SIZE], *ar;
size_t len = strlen(str);

if(len >= 2*BUF_SIZE) return ERROR;
memcpy(buf, str, len);

ar = malloc(n);
if(!ar) return ERROR;

}

(b) Vulnerable Program(a) Non-vulnerable Program

Figure 1: An example of the Buffer Error vulnerability. There are
not many differences between the code of the two programs, which
shows the necessity of fine-grained vulnerability detection.

lot of time to deal with. Detecting vulnerabilities accurately
is a great concern in the field of software security.

To improve the effectiveness and efficiency of vulnerabil-
ity detection and reduce manual auditing, many detection ap-
proaches have been proposed. The mainstream methods can
be divided into two categories, including dynamic program
analysis and static program analysis. Dynamic analysis iden-
tifies vulnerabilities in running programs, such as construct-
ing abnormal inputs to trigger the vulnerable code. This kind
of method can achieve high precision, but it is hard to reach
all potential vulnerabilities and often trapped by the path ex-
plosion problem [Cadar et al., 2008]. On the other side, static
analysis methods detect vulnerabilities based on the static in-
formation, such as searching for defect patterns in the pro-
gram source code. Nevertheless, such methods rely on man-
ual efforts to define defect patterns and induce relatively high
false positive and false negative.

Since a small number of code can lead to a vulnerability
or fix a vulnerability, the code difference between a vulner-
able and a non-vulnerable program can be very slight. For
example, compared with Figure 1(a), the program shown in
Figure 1(b) can cause a buffer overflow only because there
is an additional “2” in the predicate statement. It can directly
lead to a lower accuracy of traditional static analysis methods.
The root cause is that these methods can not exactly identify
and capture the critical factors that determine whether code is
vulnerable, resulting in their wrong judgment.

In this paper, fine-grained vulnerability detection refers to
distinguishing the vulnerabilities accurately from the vulner-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4665



Step I: Generating
code property graphs

Input Step II: Encoding
code property graphs 
to feature matrix

Step III: Classification by

attention neural network
Output

Whether the 
program has 
vulnerabilities

Figure 2: The general framework of VulSniper.

able and the non-vulnerable program that have slight differ-
ences, which is as shown in Figure 1. The essence of this
problem is similar to the fine-grained classification problem
in computer vision. In the field of computer vision, fine-
grained classification refers to classifying images into more
fine-grained categories, such as distinguishing between chi-
huahuas and bulldogs, rather than that between dogs and
cats [Xiao et al., 2014]. The input of this problem only
has slight differences, and the key is how to capture and
learn the slight differences exactly. To accurately capture
those differences, the attention mechanism is proposed and
has been studied in depth previously [Mnih et al., 2014;
Jaderberg et al., 2015; Wang et al., 2017; Fu et al., 2017].

Although attention neural network is widely used and has
achieved good performance in the field of computer vision,
applying it to vulnerability detection has two challenges.
First, we need a method to encode the source code of the pro-
gram with minimal information loss. Second, the structure of
the attention neural network should be elaborately designed
to better adapt to the vulnerability detection problem. The
general framework of VulSniper is shown in Figure 2. Vul-
Sniper firstly extracts the Code Property Graph (CPG) from
the source code of the program to obtain more semantic fea-
tures than the plain text of the source code. After that, the
CPG is encoded to a feature tensor and input into the neural
network. In our neural network model, we first embed the fea-
ture tensor through an embedding module, and then take ad-
vantage of the attention model to adequately learn the weights
of different nodes in the CPG. Finally, fully connected layers
are utilized to summarize the features and achieve the binary
classification of the feature tensor. The result of the classifi-
cation indicates whether the program has vulnerabilities.

We train the neural network model and evaluate VulSniper
on the SARD Buffer Error dataset and the SARD Resource
Management Error dataset, which are two sub-dataset of
SARD2. There are both vulnerable and non-vulnerable code
in each test case of SARD, where few code differences exist.
Therefore, it is suitable for evaluating a fine-grained vulner-
ability detection model. Experimental results show that Vul-
Sniper significantly outperforms the state-of-the-art methods
in fine-grained vulnerability detection.

2https://samate.nist.gov/SRD/index.php

The contributions of our work are summarized as follows:

• We propose a novel method to encode source code into
a feature tensor, which has more semantic information
and is beneficial for extracting program features and de-
tecting vulnerabilities.

• We propose an attention neural network model for fine-
grained vulnerability detection. This model learns atten-
tion weights on the different parts of the program code,
effectively detecting vulnerabilities.

• We evaluate VulSniper on the two benchmark datasets,
the SARD Buffer Error dataset and the SARD Resource
Management Error dataset, and the results show that
VulSniper can achieve much higher accuracy than the
state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2,
we discuss the related work. In Section 3, we present our
method of encoding the program source code. In Section
4, we present our neural network model with the attention
mechanism. The experiments are discussed in Section 5, and
finally, we conclude and summarize the paper in Section 6.

2 Related Work
Recently, many different approaches have been studied to im-
prove the accuracy of vulnerability detection. The existing
methods include dynamic program analysis [Wu et al., 2017;
Wu et al., 2015; Chen et al., 2018; Karamcheti et al.,
2018] and static program analysis [Yamaguchi et al., 2014;
Wu and Yang, 2017; Li et al., 2018; Perl et al., 2015;
Yamaguchi et al., 2015; Li and Ernst, 2012]. Static analysis
is widely used due to its convenience on operation. Among
such methods, it is common to use the graph structure to de-
tect vulnerabilities bacause it contains the high semantic ab-
stracted information which can better describe the features of
the program. For example, Pham et al. proposed SecureSync
which uses the graph search to detect the vulnerabilities in the
software [Pham et al., 2010]. It searches for the Abstract Syn-
tax Tree (AST) and the Program Dependency Graph (PDG)
of known vulnerabilities in those of software. However, the
graph search method is less flexible, which can only detect
the same vulnerabilities that are repeated in the software.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4666



char * strENTRY size_t n
char buf 

[BUF_SIZE] , * ar ;
size_t len = 

strlen ( str ) ;
memcpy ( buf , 

str , len )
ar = 

malloc ( n )
if(! ar)

return 
ERROR ;

EXIT

char * str size_t n
buf 

[BUF_SIZE] 
* ar

char 
[BUF_SIZE] 

BUF_SIZE buf archar *

size_t len

size_t len

= memcpy

len strlen 
( str )

strlen str

buf , str , 
len

buf str len ar malloc ( n )

malloc n

if !

ar

return ERROR

AST edge

CFG edge

CFG node

AST node

if(len >= 
2*BUF_SIZE)

return 
ERROR ;

return

ERROR

if >=

len 2*BUF_SIZE

2 BUF_SIZE

=

Figure 3: The simplified CPG of the program in Figure 1(b). The meaning of the graphics and colors is shown in the legends.

Nowadays, machine learning and deep learning models are
very popular and have achieved enormous success in many
different fields. Meanwhile, many vulnerability detection ap-
proaches employ machine learning to improve their perfor-
mance [Grieco et al., 2016; Feng et al., 2016; Li et al., 2018;
Yamaguchi et al., 2011; Neuhaus et al., 2007; Yamaguchi et
al., 2012; Wang et al., 2016]. Feng et al. proposed a method
for detecting vulnerabilities with the high-level features of the
graph structure, which has higher accuracy than the methods
based on graph search [Feng et al., 2016]. This method clus-
ters the Control Flow Graphs (CFG) of all known vulnera-
bilities, and compares the CFG of program with the centroid
of each class to determine if the program has vulnerabilities.
Furthermore, several studies have tried deep learning models
on vulnerability detection. For example, Li et al. proposed
VulDeePecker which takes advantage of neural networks [Li
et al., 2018]. It first performs the program slicing on source
code to exclude irrelevant code. Then, it embeds the code
and trains BiLSTM to classify the sequences of word vec-
tors to identify vulnerabilities, which achieves an accuracy of
more than 90%. There are also some methods which can in-
fer potential vulnerabilities by self-learning [Yun et al., 2016;
Yamaguchi et al., 2013]. Despite that the above methods have
successfully improved the performance in common vulnera-
bility detection problems, their accuracy is still reduced in the
face of fine-grained vulnerability detection problems.

3 Encoding Code Features
To detect fine-grained vulnerabilities, we design a neural net-
work with the attention mechanism. Before the source code
is input to the neural network, it needs to be encoded into a
vector with a certain shape. In this section, we introduce how
to encode the source code of a program into a feature tensor.

3.1 Generating Code Property Graph
For a program, it is not a good choice to treat the code as
plain text, because it has more semantic structures, which is
different from natural language. Instead, the graph structure
(e.g., AST, CFG, and PDG) is a proper form for program rep-
resentation, where the semantic information can be extracted
and abstracted initially. Each graph structure describes a spe-
cific perspective of the program. For example, AST describes
the syntactic structure, while CFG describes the execution
path and the transfer of control flow of the program. The

code property graph [Yamaguchi et al., 2014] integrates three
kinds of graphs, including CFG, AST and PDG, which con-
tains complete semantic features.

As for implementation, VulSniper uses Joern3 for CPG
generation, which is an open-source tool for robust analysis
of C/C++ code. It can efficiently generate a CPG and store it
in the Neo4j4 graph database. We generate the CPG for the
code in Figure 1(b), and the result is shown in Figure 3. It
should be noted that since the data dependency and control
dependency information can be indirectly reflected by the en-
coding of AST and CFG in the subsequent steps, VulSniper
simplifies the CPG by keeping the CFG and AST and remov-
ing the PDG information in it.

3.2 Encoding Feature Tensor
We continue to encode the simplified CPG as a feature tensor.
The feature tensor is similar to the matrix representation of
the graph, the difference is that we use vectors to represent
the relations between nodes due to the more information. The
feature tensor of the CPG is defined as follows:
Definition 1. A feature tensor T (G) is a 3rd-order tensor
with the shape of n × n×m, where G is a code property
graph containing n nodes {v1, v2, ..., vn} and ∀ti,j,k ∈ T (G)
is set as follows:

ti,j,k =

{
1 is match(relations(vi, vj), f(k))

0 otherwise

where f(k) denotes the corresponding feature at k index,
relations(vi, vj) represents the features of the relation be-
tween vi and vj and is match return true when certain con-
ditions are satisfied between f(k) and relations(vi, vj).

It should be noted that the value of m in definition 1 is
specific to the programming language. In this paper, m is
set to 144 according to the characteristics of C/C++ lan-
guage. We use M(vi, vj) to denote the 144-dimensional vec-
tor (ti,j,1, ti,j,2, ..., ti,j,144) where M can be regarded as a
matrix whose rows and columns are composed of the CPG
nodes. M(vi, vj) can be divided into five different fields ac-
cording to the features to be encoded:

M(vi, vj) = {Vi, Vj , Iij , ASTij , CFGij},
where {·} denotes the concatenation of vectors.

3https://joern.readthedocs.io/en/latest/index.html
4https://neo4j.com/

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4667



Figure 4: The feature tensor of the CPG in Figure 3. x axis and
y axis both represent the CPG nodes. Along z axis are the 144-
dimensional vectors which encode the relations between the nodes.
The blue points represent 1 in the feature tensor.

Each field in M(vi, vj) is a |K|-dimensional vector, where
K is the set of the features to be encoded. Since each field
encodes different features, their feature sets K is different.
The details of each field are described as follows:

• Vi and Vj are 19-dimensional vectors and they encode
the data types, modifiers or specific flags of vi and vj
respectively. The feature sets of Vi and Vj are both K =
{short, int, long, char, float, double, bool, const, static,
*, void, unsigned, signed, struct, union, enum, function,
constant, else}. The components in Vi (the same is true
for Vj) can be expressed as follows:

ti,j,k =

{
1 f(k) ∈ vartypes(vi)

0 otherwise
,

where 0 ≤ k ≤ 18 and vartypes(vi) denotes the data
types, modifiers or specific flags of vi.
• Iij is a 29-dimensional vector, which encodes the opera-

tor between vi and vj . The feature set of Iij is K = {+,
−, ∗, /, %, ∧, =, |, &, ‖, &&, <, >, <=, >=, ==, !=,
+ =, − =, ∗ =, / =, % =, ∧ =, |=, & =, �, �,
�=,�=}. The components in Iij can be expressed as
follows:

ti,j,k =

{
1 f(k) = operator(vi, vj)

0 otherwise
,

where 38 ≤ k ≤ 66 and operator(vi, vj) denotes the
operator between vi and vj .
• ASTij is a 57-dimensional vector, which encodes the

parent-child relation between AST nodes. The ele-
ments in the feature set K of ASTij are the 57 kinds
of AST node types in the CPG (e.g., Condition and
CallExpression). The components in ASTij can be
expressed as follows:

ti,j,k =

{
1 is parent(vi, vj) and f(k) = type(vj)

0 otherwise
,

where 67 ≤ k ≤ 123 and is parent(vi, vj) return true
when there is a AST edge from vj to vi.
• CFGij is a 20-dimensional vector, which encodes the

adjacency relation between CFG nodes. The elements
in the feature set K of CFGij are the 20 kinds of CFG

so
ftm

ax

Classification Module

Attention Module

Embedding Module

Figure 5: The structure of the neural network model in VulSniper.

node types in the CPG (e.g., ReturnStatement). The
components in CFGij can be expressed as follows:

ti,j,k =

{
1 is adj(vi, vj) and f(k) = type(vj)

0 otherwise
,

where 124 ≤ k ≤ 144 and is adj(vi, vj) return true
when there is a CFG edge from vi to vj .

We derive an encoded feature tensor for the CPG in Fig-
ure 3, and result is as shown in Figure 4. After that, because
of the different length of the code, the above matrix M can
have different sizes. However, static neural network requires
the input to have the same size, so M needs to be adjusted to
a same size. We define a fixed size which is set to 128, and
then pad or cut the matrix M with different sizes to the fixed
size. The details are as follows:

• When a matrix is smaller than the fixed size, we pad
zeros at the end of the matrix.

• When a matrix is larger than the fixed size, we define a
critical statement in the source code and cut off the code
away from it. The critical statement are the statements
that are highly vulnerable (e.g., sensitive API). The code
far from the critical statement is less relevant to the vul-
nerability which means it is less important.

Through the above steps, we can obtain a feature tensor
with a shape of 128×128×144, which is used as the input to
the neural network. The feature tensor greatly preserves the
semantic information in the original program, which can be
fully utilized by neural networks.

4 Attention-based Model
To overcome the difficulty of defining defect patterns in the
static analysis methods, we use the neural network to auto-
matically learn the patterns.

4.1 Overall Structure
Our neural network model is mainly composed of three mod-
ules: the embedding module, the attention module and the
classification module. The embedding module transforms the
feature tensor into a matrix composed of feature vectors of
node by flattening and mapping. According to the idea of the
soft attention, the attention module assigns attention weights
to different nodes, which is implemented by bottom-up and
top-down structures. The classification module at the end of

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4668



Short-Circuit Branch

sigm
o

id

conv1d_transpose

1

conv1d

Attention Mask Branch

Figure 6: The structure of the attention module in VulSniper.

the network is composed of fully connected layers to summa-
rizes the features. Finally, softmax is used to achieve the bi-
nary classification, which indicates whether the program has
vulnerabilities. The structure of our neural network model is
shown in Figure 5.

In the embedding module, we first use a fully connected
layer to map the 144-dimensional vectors to a lower dimen-
sion c = 6. After that, we transform the shape of the feature
tensor. Recall that M(vi, vj) encodes the relations between vi
and vj , the matrix [M(vi, v1),M(vi, v2), ...,M(vi, vn)] de-
scribes the features of vi. Therefore, we flatten the matrix to
a vector which can be regarded as the feature vector of vi.
The length of the feature vector is c × n after the flattening.
Finally, another fully connected layer is used to map the c×n
vector to a lower dimension d = 64 for subsequent learning.
All the parameters mentioned above are determined by our
well-designed network structure.

4.2 Attention Module
The attention module in VulSniper can be regarded as a typi-
cal soft attention model. As shown in Figure 6, the attention
module is divided into two branches: attention mask branch
and short-circuit branch. The short-circuit branch directly
takes the input x of the attention module as an output S(x)
without any other processing, which means S(x) = x. The
attention mask branch learns the attention weights of different
nodes through bottom-up and top-down structures. The size
of the output A(x) of the attention mask branch is the same
with the input x of the attention module, so that A(x) can
be integrated with S(x) by matrix dot production. In addi-
tion, before integrating A(x) and S(x), we normalize A(x)
with sigmoid and plus 1 to prevent the gradient from vanish-
ing [Wang et al., 2017]. The output of the attention module
O(x) can be summarized as follows:

O(x) = (1 + A(x)) · S(x),

where x is the input of the attention module, and · denotes
the matrix dot production.

As for the details of the attention mask branch, we use mul-
tiple one-dimensional convolution and the transpose of one-
dimensional convolution to implement the bottom-up and
top-down structure, respectively. With the one-dimensional
convolution, the receptive field is gradually expanded to ob-
tain surrounding and global information. Since the nodes in
a certain AST subtree are adjacent in the feature tensor, the

Dataset Test Cases Bad Functions Good Functions

CWE-119 7273 6586 9634
CWE-399 4124 3975 7854

Table 1: The amount of data in datasets. CWE-119 and CWE-399
refer to the SARD Buffer Error dataset and the SARD Resource
Management Error dataset respectively.

operation allows the nodes to perceive their located AST sub-
tree. With the transpose of one-dimensional convolution, the
high-level features are scaled to the same size as the input, so
that the attention weights can be applied to the input.

5 Experiments
To evaluate the effectiveness of VulSniper, we conduct ex-
periments and compare them with state-of-the-art models for
fine-grained vulnerability detection.

5.1 Experiment Settings
Preparing data. SARD is a project maintained by NIST5,
which has a large number of production, synthetic, and aca-
demic security defects or vulnerabilities. The reason we use
SARD as our data source is that the data in SARD has both
vulnerable versions and non-vulnerable versions, which im-
plies that it can effectively evaluate whether a model has good
fine-grained vulnerability detection capabilities. In each test
case, there is one bad function which contains a certain vul-
nerability and several good functions where the vulnerabil-
ity in the bad function has been fixed. We use the syntac-
tic analysis method to extract the bad and good functions
in each test case. The amount of data finally obtained is
shown in Table 1. VulSniper focuses on solving the prob-
lem of two certain types of vulnerability which are Buffer
Error (i.e., CWE-119) and Resource Management Error (i.e.,
CWE-399). Some functions cannot be successfully extracted
through the above method, resulting in a slight decrease in
the number of bad and good functions. After that, all the
extracted functions are encoded according to our encoding
method, and the feature tensors of the bad and good func-
tions are labeled as “1” (i.e., vulnerable), and “0” (i.e., non-
vulnerable) respectively. In addition, we divide the datasets
into a training set, a validation set, and a test set with a ratio
of 6:2:2, which is similar to the common approaches.

Environment. We run our experiments on a machine with
32G RAM, 2T SSD and two Intel Xeon E7-4809 v4 CPUs
operating at 2.10GHz.

5.2 Experiment Results
In this paper, we use five widely used metrics which are false
positive rate (FPR), false negative rate (FNR), true positive
rate (TPR), precision (P), and F1-score (F1) to evaluate the
performance of VulSniper. FPR measures the proportion of
false positive vulnerabilities in the entire population of non-
vulnerable samples, FNR measures the proportion of false
negative vulnerabilities in the entire population of vulnerable

5https://www.nist.gov/

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4669



Dataset Tools FPR
(%)

FNR
(%)

TPR
(%)

P
(%)

F1
(%)

CWE-119

Flawfinder 56.6 44.8 55.2 39.9 46.3
RATS 68.7 31.3 68.7 40.5 51.0
DeepSim 16.1 41.6 58.4 71.6 64.4
VulSniper 6.42 26.2 73.8 88.7 80.6

CWE-399

Flawfinder 40.7 58.4 41.6 34.1 37.4
RATS 33.9 63.8 36.2 35.0 35.6
DeepSim 7.30 52.2 47.8 77.2 59.1
VulSniper 8.49 32.7 67.3 80.4 73.3

Table 2: The metrics of the different tools on the two datasets.

samples, TPR measures the proportion of true positive vul-
nerabilities in the entire population of vulnerable samples, P
measures the correctness of the detected vulnerabilities and
F1-score takes both precision and recall rate into account,
which can be regarded as their weighted average.

To demonstrate the effectiveness of VulSniper, we se-
lected three tools as baselines to conduct comparative exper-
iments on the SARD Buffer Error dataset and the SARD Re-
source Management Error dataset. The selected tools include
Flawfinder6, RATS7, and DeepSim [Zhao and Huang, 2018].
Flawfinder and RATS are two widely used open source vul-
nerability detection tools. They do static searches based on
lexical analysis. DeepSim is a deep learning model for mea-
suring code similarity. There are two reasons for selecting
DeepSim. On the one hand, it is very common to detect vul-
nerabilities by judging whether the code is similar to a known
vulnerability code. On the other hand, since DeepSim is also
based on neural networks, it can be used to compare the ef-
fectiveness of the network models. It should be noted that we
have slightly adapted the above tools to get the best results on
the above datasets. For example, Both Flawfinder and RATS
can manually set the alarm threshold, so we experiment with
different thresholds and present the best results.

Table 2 presents the experiment results on the SARD
Buffer Error dataset and the SARD Resource Management
Error dataset. As shown in Table 2, the performance of Vul-
Sniper is obviously better than the three baselines. VulSniper
achieves a F1-score of 80.6% on the SARD Buffer Error
dataset and a F1-score of 73.3% on the SARD Resource Man-
agement Error dataset, which shows it can detect vulnerabili-
ties with few false positives and false negatives.

Meanwhile, we analyzed the reasons for the above re-
sults. Flawfinder and RATS work by using a built-in database
of C/C++ functions with well-known problems and match-
ing the source code text against those functions in database.
However, they do not take the semantic features of the pro-
gram into account, which leads to their lower F1-score. Al-
though DeepSim utilizes control flow and data flow informa-
tion, and also applies the neural network model, it does not
make use of the attention mechanism, resulting in its poor

6https://dwheeler.com/flawfinder/
7https://code.google.com/archive/p/rough-auditing-tool-for-

security/

Figure 7: The visualization of attention weights for the feature tensor
in Figure 4. The bright and dark colors represent higher and lower
attention weights, respectively.

performance on fine-grained vulnerability detection. As a
comparison, VulSniper considers the above problems at the
same time. Based on the fine-grained and semantic informa-
tion, VulSniper takes advantage of the neural network model
with the attention mechanism to well achieve the detection of
fine-grained vulnerabilities.

To better explore the effect of the attention mechanism in
VulSniper, we visualize the normalized attention weights for
the feature tensor in Figure 4 and the result is as shown in
Figure 7. Since the type of vulnerability is Buffer Error, the
attention is mainly on the area around the memory operation
APIs such as memcpy and malloc. BUF SIZE and “2” are
also given sufficient attention, which indicates that the net-
work has noticed the critical factors causing the vulnerability.
In addition, it is not difficult to find that the attention of CFG
nodes is generally lower than that of AST nodes, which shows
that the network is more inclined to focus on finer-grained in-
formation. In general, the effect of the attention mechanism
in VulSniper is similar to manually analyzing vulnerabilities,
that is, first finding the sensitive operation and then examining
if there are defects in the data associated with the operation,
which demonstrates the effectiveness of introducing attention
mechanisms to detecting fine-grained vulnerabilities.

6 Conclusion
In this paper, we propose VulSniper to solve the problem of
low accuracy in detecting fine-grained vulnerabilities. Vul-
Sniper uses a well-designed encoding method to transform
the source code into a feature tensor and takes advantage of
attention neural networks to implement fine-grained detection
of vulnerabilities. We use five common metrics to evaluate
VulSniper and conduct a comparative experiment on the two
benchmark datasets with Flawfinder, RATS and DeepSim.
VulSniper achieves a F1-score of 80.6% and a F1-score of
73.3% on the SARD Buffer Error dataset and the SARD Re-
source Management Error dataset respectively, which is sig-
nificantly better than state-of-the-art methods. Experimental
results show that it is effective to improve the accuracy of de-
tecting fine-grained vulnerabilities by utilizing the attention
mechanism, which provides new insights for the future work.

Acknowledgments
This work is supported by National Key R&D Program of
China (No.2018YFB0803600) and National Natural Science
Foundation of China (No.61772507).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4670



References
[Cadar et al., 2008] Cristian Cadar, Daniel Dunbar, and

Dawson Engler. Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs.
In OSDI, pages 209–224, 2008.

[Chen et al., 2018] Jiongyi Chen, Wenrui Diao, Qingchuan
Zhao, Chaoshun Zuo, Zhiqiang Lin, XiaoFeng Wang,
Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Ke-
huan Zhang. Iotfuzzer: Discovering memory corruptions
in iot through app-based fuzzing. In NDSS, 2018.

[Feng et al., 2016] Qian Feng, Rundong Zhou, Chengcheng
Xu, Yao Cheng, Brian Testa, and Heng Yin. Scalable
graph-based bug search for firmware images. In CCS,
pages 480–491, 2016.

[Fu et al., 2017] Jianlong Fu, Heliang Zheng, and Tao Mei.
Look closer to see better: Recurrent attention convolu-
tional neural network for fine-grained image recognition.
In CVPR, pages 4476–4484, 2017.

[Grieco et al., 2016] Gustavo Grieco, Guillermo Luis Grin-
blat, Lucas Uzal, Sanjay Rawat, Josselin Feist, and Lau-
rent Mounier. Toward large-scale vulnerability discovery
using machine learning. In CODASPY, pages 85–96, 2016.

[Jaderberg et al., 2015] Max Jaderberg, Karen Simonyan,
Andrew Zisserman, and Koray Kavukcuoglu. Spatial
transformer networks. CoRR, abs/1506.02025, 2015.

[Karamcheti et al., 2018] Siddharth Karamcheti, Gideon
Mann, and David Rosenberg. Adaptive grey-box fuzz-
testing with thompson sampling. CoRR, abs/1808.08256,
2018.

[Li and Ernst, 2012] Jingyue Li and Michael D. Ernst. Cbcd:
Cloned buggy code detector. In ICSE, pages 310–320,
2012.

[Li et al., 2018] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu
Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong.
Vuldeepecker: A deep learning-based system for vulnera-
bility detection. CoRR, abs/1801.01681, 2018.

[Mnih et al., 2014] Volodymyr Mnih, Nicolas Heess, Alex
Graves, and Koray Kavukcuoglu. Recurrent models of vi-
sual attention. CoRR, abs/1406.6247, 2014.

[Neuhaus et al., 2007] Stephan Neuhaus, Thomas Zimmer-
mann, Christian Holler, and Andreas Zeller. Predicting
vulnerable software components. In CCS, pages 529–540,
2007.

[Perl et al., 2015] Henning Perl, Sergej Dechand, Matthew
Smith, Daniel Arp, Fabian Yamaguchi, Konrad Rieck,
Sascha Fahl, and Yasemin Acar. Vccfinder: Finding po-
tential vulnerabilities in open-source projects to assist code
audits. In CCS, pages 426–437, 2015.

[Pham et al., 2010] Nam H. Pham, Tung Thanh Nguyen,
Hoan Anh Nguyen, and Tien N. Nguyen. Detection of re-
curring software vulnerabilities. In ASE, pages 447–456,
2010.

[Wang et al., 2016] Song Wang, Taiyue Liu, and Lin Tan.
Automatically learning semantic features for defect pre-
diction. In ICSE, pages 297–308, 2016.

[Wang et al., 2017] Fei Wang, Mengqing Jiang, Chen Qian,
Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang,
and Xiaoou Tang. Residual attention network for image
classification. CoRR, abs/1704.06904, 2017.

[Wu and Yang, 2017] Jingzheng Wu and Mutian Yang. La-
chouti: Kernel vulnerability responding framework for the
fragmented android devices. In ESEC/FSE, pages 920–
925, 2017.

[Wu et al., 2015] Jingzheng Wu, Yanjun Wu, Zhifei Wu,
Mutian Yang, Tianyue Luo, and Yongji Wang. An-
droidfuzzer: Detecting android vulnerabilities in fuzzing
cloud. Journal of Computational Information Systems,
11(11):3859–3866, 2015.

[Wu et al., 2017] Jingzheng Wu, Shen Liu, Shouling Ji, Mu-
tian Yang, Tianyue Luo, Yanjun Wu, and Yongji Wang.
Exception beyond exception: Crashing android system by
trapping in “uncaughtexception”. In ICSE-SEIP, pages
283–292, 2017.

[Xiao et al., 2014] Tianjun Xiao, Yichong Xu, Kuiyuan
Yang, Jiaxing Zhang, Yuxin Peng, and Zheng Zhang. The
application of two-level attention models in deep convolu-
tional neural network for fine-grained image classification.
CoRR, abs/1411.6447, 2014.

[Yamaguchi et al., 2011] Fabian Yamaguchi, Felix Lindner,
and Konrad Rieck. Vulnerability extrapolation: Assisted
discovery of vulnerabilities using machine learning. In
WOOT, pages 13–13, 2011.

[Yamaguchi et al., 2012] Fabian Yamaguchi, Markus
Lottmann, and Konrad Rieck. Generalized vulnerability
extrapolation using abstract syntax trees. In ACSAC,
pages 359–368, 2012.

[Yamaguchi et al., 2013] Fabian Yamaguchi, Christian
Wressnegger, Hugo Gascon, and Konrad Rieck. Chucky:
Exposing missing checks in source code for vulnerability
discovery. In CCS, pages 499–510, 2013.

[Yamaguchi et al., 2014] Fabian Yamaguchi, Nico Golde,
Daniel Arp, and Konrad Rieck. Modeling and discover-
ing vulnerabilities with code property graphs. In SP, pages
590–604, 2014.

[Yamaguchi et al., 2015] Fabian Yamaguchi, Alwin Maier,
Hugo Gascon, and Konrad Rieck. Automatic inference of
search patterns for taint-style vulnerabilities. In SP, pages
797–812, 2015.

[Yun et al., 2016] Insu Yun, Changwoo Min, Xujie Si,
Yeongjin Jang, Taesoo Kim, and Mayur Naik. Apisan:
Sanitizing api usages through semantic cross-checking. In
SEC, pages 363–378, 2016.

[Zhao and Huang, 2018] Gang Zhao and Jeff Huang. Deep-
sim: Deep learning code functional similarity. In
ESEC/FSE, pages 141–151, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4671


